
OpenMP threading

Paolo Burgio
paolo.burgio@unimore.it

A history of OpenMP

› 1997
– OpenMP for Fortran 1.0

› 1998
– OpenMP for C/C++ 1.0

› 2000
– OpenMP for Fortran 2.0

› 2002
– OpenMP for C/C++ 2.5

› 2008
– OpenMP 3.0

› 2011
– OpenMP 3.1

› 2014
– OpenMP 4.5

2

Regular, loop-based parallelism

Irregular, parallelism➔ tasking

Heterogeneous parallelism, à la GP-GPU

What is OpenMP?

› Let's start from definition
– https://en.wikipedia.org/wiki/OpenMP

3

OpenMP (Open Multi-Processing) is an application programming interface (API)
that supports multi-platform shared memory multiprocessing programming in C,
C++, and Fortran, on most platforms, processor architectures and operating
systems, including Solaris, AIX, HP-UX, Linux, OS X, and Windows. It consists of a
set of compiler directives, library routines, and environment variables that
influence run-time behavior

eng.wikipedia.org

https://en.wikipedia.org/wiki/OpenMP

Shared memory

› Coherence problem
– Memory consistency issue

– Data races

› Can share data ptrs
– Ease-to-use

› Several paradigm ("flavours")
– Symmetric Multiprocessing

– Distributed Shared memory

– Partitioned Global Access Space

4

Process
P0

Shared memory

T
T

T

(read, write)
(read, write)

DATUM

Outline

› Expressing parallelism
– Understanding parallel threads

› Memory Data management
– Data clauses

› Synchronization
– Barriers, locks, critical sections

› Work partitioning
– Loops, sections, single work, tasks…

› Execution devices
– Target

5

pragma omp parallel construct

6

#pragma omp parallel [clause [[,]clause]...] new-line

structured-block

Where clauses can be:

if([parallel :] scalar-expression)

num_threads (integer-expression)

default(shared | none)

firstprivate (list)

private (list)

shared (list)

copyin (list)

reduction(reduction-identifier : list)

proc_bind(master | close | spread)

Creating a parreg

› Master-slave, fork-join execution model
– Master thread spawns a team of Slave threads

– They all perform computation in parallel

– At the end of the parallel region, implicit barrier

7

int main()

{

/* Sequential code */

#pragma omp parallel num_threads(4)

{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */

}

T

T TT

Thread control

› OpenMP provides ways to
– Retrieve thread ID

– Retrieve number of threads

– Set the number of threads

– Specify threads-to-cores affinity (we won't see this)

8

Get thread ID

› Function call
– Returns an integer

– Can be used everywhere where inside your code

› Also in sequential parts

› Don't forget to #include <omp.h>!!

› Master thread (typically) has ID #0

9

/*

* The omp_get_thread_num routine returns

* the thread number, within the current team,

* of the calling thread.

*/

int omp_get_thread_num(void);

omp.h

T

Get the number of threads

› Function call
– Returns an integer

– Can be used everywhere where inside your code

› Also in sequential parts

– Don't forget to #include <omp.h>!!

› BTW
– …thread ID from omp_get_thread_num is always < this value..

10

/*

* The omp_get_num_threads routine returns

* the number of threads in the current team.

*/

int omp_get_num_threads(void);

omp.h

Set the number of threads (2)

› Function call
– Accepts an integer

– Can be used everywhere where inside your code

› Also in sequential parts

› Don't forget to #include <omp.h>!!

› Overrides value from OMP_NUM_THREADS
– Affects all of the subsequent parallel regions

11

/*

* The omp_set_num_threads routine affects the number of threads

* to be used for subsequent parallel regions that do not specify

* a num_threads clause, by setting the value of the first

* element of the nthreads-var ICV of the current task.

*/

void omp_set_num_threads(int num_threads);

omp.h

Set the number of threads (1)

12

#pragma omp parallel [clause [[,]clause]...] new-line

structured-block

Where clauses can be:

if([parallel :] scalar-expression)

num_threads (integer-expression)

default(shared | none)

firstprivate (list)

private (list)

shared (list)

copyin (list)

reduction(reduction-identifier : list)

proc_bind(master | close | spread)

Exercise

› Spawn a team of parallel (OMP)Threads
– Each printing "Hello Parallel World. I am thread #<tid> out of <num>"

– Also, print "Hello Sequential World. I am thread #<tid> out of <num>" before
and after parreg

– What do you see?

› Don't forget the –fopenmp switch
– Compiler-dependant!

13

Let's

code!

Compiler Compiler Options

GNU (gcc, g++, gfortran) -fopenmp

Intel (icc ifort) -openmp

Portland Group (pgcc,pgCC,pgf77,pgf90) -mp

The if clause

› If scalar-expression is false, then spawn a single-thread
region

› We will see it also in other constructs…
– "Can be used in combined constructs, in this case programmer must specify which

one it refers to (in this case, with the parallel specifier)"

14

#pragma omp parallel [clause [[,]clause]...] new-line

structured-block

Where clauses can be:

if([parallel :] scalar-expression)

num_threads (integer-expression)

default(shared | none)

firstprivate (list)

private (list)

shared (list)

copyin (list)

reduction(reduction-identifier : list)

proc_bind(master | close | spread)

Nested parallel regions

› One can create a parallel region within a parallel region
– A new team of thread is created

› Enabled-disabled via environmental var, or library call

› Easy to lose control..
– Too many threads!

– Their number explodes

– Be ready to debug..

15

Dynamic # threads adjustment

› The OpenMP implementation might decide to dynamically
adjust the number of thread within a parreg
– Aka the team size

– Under heavy load might be reduced

› Also this can be disabled

16

Under the hood

› You have control on # threads
– Partly

› You have parial control on where the threads are scheduled
– Affinity

› You have no control on the actual scheduling!
– Demanded to OS + runtime

› …"OS and runtime"?

17

OpenMP software stack

Multi-layer stack, engineered for portability

› Application code
– Compliant to OMP standard

› Runtime (e.g., GCC-OpenMP)
– Provides services for parallelism

– Compiler replaces pragma with
runtime-specific function calls

› OS (e.g., Linux)
– Provides basic services

– Threading, memory mgmt, synch

– Can be standardized (e.g., PThreads)

18

User code

#pragma omp parallel

Operating System

Hardware

OpenMP runtime

CPU
0

CPU
1

CPU
2

CPU
3

T TT T

T

GOMP_parallel(…)

pthread_create(…)

Thread scheduling (algorithm)

Outline

› Expressing parallelism
– Understanding parallel threads

› Memory Data management
– Data clauses

› Synchronization
– Barriers, locks, critical sections

› Work partitioning
– Loops, sections, single work, tasks…

› Execution devices
– Target

19

Exercise

› Declare and initialize a variable outside the parallel region

› Spawn a team of parallel Threads
– Each printing the value of the variable

› What do you see?

20

Let's

code!

shared variables

› The variable is shared among the parallel threads
– If one thread modifies it, then all threads see the new value

› Let's see this!
– Let (only) Thread 0 modify the value of the variable

› What's happening?
– (probably|might be that) Thread 0 modifies the value after the other threads

read it

– The more thread you have, the more probably you see this…

21

Let's

code!

As opposite to… private variables

› Threads might wants to own a private copy of a datum
– Other threads cannot modify it

› Two ways
– They can declare it inside the parallel region

– Or, they can use data sharing attribute clauses

› private | firstprivate
– Create a storage for the specified datum (variable or param) in each threads'

stack

22

Data sharing clauses in parregs

23

#pragma omp parallel [clause [[,]clause]...] new-line

structured-block

Where clauses can be:

if([parallel :] scalar-expression)

num_threads (integer-expression)

default(shared | none)

firstprivate (list)

private (list)

shared (list)

copyin (list)

reduction(reduction-identifier : list)

proc_bind(master | close | spread)

Initial value for (first)private data

› How is the private data initialized?
– firstprivate initializes it with the value of the enclosing context

– private does not initialize it / initializes it with 0

24

Exercise

› Declare and initialize a variable outside the parallel region

› Spawn a team of parallel Threads
– Mark the variable as private using data sharing clause

– Each printing the value of the variable

– Let (only) Thread 0 modify the value of the variable

› What do you see?
– Now, mark the variable as firstprivate

25

Let's

code!

shared data-sharing clause

› All variables specified are shared among all threads

› Programmer is in charge of consistency!
– OpenMP philosophy..

26

Multiple variables in a single clause

› Do not need to repeat the clause always
– If you don't want..

› Separated by commas

27

int a = 11, b = 1, c;

#pragma omp parallel num_threads(16) \

private(a, b)

private(c)

{

…

private vs. parreg-local variables

› Find the difference between…

› "A new storage is created as we enter the region, and
destroyed after"

› On the right (private)
– There is also a storage that exists before and after parreg

28

int a = ...;

#pragma omp parallel private(a) \

num_threads(4)

{

a = ...

}

#pragma omp parallel num_threads(4)

{

int a = ...

}

Variables and memory (1)

› "The traditional way"

29

#pragma omp parallel num_threads(4)

{

int a = ...

}

T

T TT

Process memory

a
T0 Stack

a
T2 Stack

a
T1 Stack

a
T3 Stack

Variables and memory (2)

› Create a new storage for the variables, local to threads

30

int a = 11;

#pragma omp parallel private(a) \

num_threads(4)

{

a = ...

}

T

T TT

a

T0 Stack

11

a

a
T2 Stack

a
T1 Stack

a
T3 Stack

?

?

?

?

Process memory

Variables and memory (3)

› Create a new storage for the variables, local to threads, and initialize

31

int a = 11;

#pragma omp parallel firstprivate(a) \

num_threads(4)

{

a = ...

}

T

T TT

a

11

a
T0 Stack

a
T2 Stack

a
T1 Stack

a
T3 Stack

11

11

11

11

Process memory

Variables and memory (4)

› Every slave Thread refers to master's storage

32

int a = 11;

#pragma omp parallel shared(a) \

num_threads(4)

{

a = ...

}

T

T TT

a
T0 Stack

11

Process memory

Data sharing clauses in parregs

33

#pragma omp parallel [clause [[,]clause]...] new-line

structured-block

Where clauses can be:

if([parallel :] scalar-expression)

num_threads (integer-expression)

default(shared | none)

firstprivate (list)

private (list)

shared (list)

copyin (list)

reduction(reduction-identifier : list)

proc_bind(master | close | spread)

default data sharing clause

› Can be
– shared: all variables referenced in the construct that are not present in a

data sharing clause are shared

– none: each variable that is referenced in the construct, and that does not
have a predetermined data-sharing attribute, must have its data-sharing
attribute explicitly determined using a data-sharing clause

› (Yes, we can have predetermined attributes)
– We won't see this

34

The default clause explicitly determines the data-sharing attributes of

variables that are referenced in a parallel, teams, or task generating construct
and would otherwise be implicitly determined (see Section 2.15.1.1 on page
179).

OpenMP specifications

Exercise

› Declare and initialize a variable outside the parallel region

› Spawn a team of parallel Threads
– Use the default(none)using data sharing clause

– Do not use any other data sharing clause

– Each thread prints the value of the variable

› What do you see?

35

Let's

code!

Watch out!

› We haven't seen everything..
– Rules determining default sharing attributes are complex

– For instance, automatic variables within a parreg are implicitly private

– static variables within a parallel are implicitly shared!!

› Stay on the safe side:
– Use the default clause for variables you care about!!

– Use shared clauses

– If you can, declare variables inside parreg, instead of marking them as private

› …informatics is the art science of managing data

36

reduction clause in parregs

37

#pragma omp parallel [clause [[,]clause]...] new-line

structured-block

Where clauses can be:

if([parallel :] scalar-expression)

num_threads (integer-expression)

default(shared | none)

firstprivate (list)

private (list)

shared (list)

copyin (list)

reduction(reduction-identifier : list)

proc_bind(master | close | spread)

Reduction

› In a nutshell
– For each variable specified, create a private storage

– At the end of the region, update master thread's value according to
reduction-identifier

– The variable must be qualified for that operation

38

The reduction clause can be used to perform some forms of recurrence calculations
(involving mathematically associative and commutative operators) in parallel. For parallel
[…], a private copy of each list item is created, one for each implicit task, as if the private
clause had been used. […] The private copy is then initialized as specified above. At the
end of the region for which the reduction clause was specified, the original list item is
updated by combining its original value with the final value of each of the private copies,
using the combiner of the specified reduction-identifier.

OpenMP specifications

Reduction identifiers

› Mathematical/logical identifiers
– Each has a default initializer, and a combiner

– Minus (-) is more or less the same as plus (+)

39

+ - * & | ˆ && || max min

OpenMP
specifications

Exercise

› Declare and initialize a variable outside the parallel region
– int a = 11

› Spawn a team of parallel Threads
– Mark the variable as reduction(+:a)

– Increment variable a

– Print the value of the variable before, inside, and after the parreg

› What do you see?
– (at home) repeat with other reduction-identifiers

40

Let's

code!

How to run the examples

› Download the Code/ folder from the course website

› Compile

› $ gcc –fopenmp code.c -o code

› Run (Unix/Linux)

$./code

› Run (Win/Cygwin)

$./code.exe

41

Let's

code!

References

› "Calcolo parallelo" website
– http://algo.ing.unimo.it/people/andrea/Didattica/HPC/index.html

› My contacts
– paolo.burgio@unimore.it

– http://hipert.mat.unimore.it/people/paolob/

› Useful links
– http://www.google.com

– http://www.openmp.org

– https://gcc.gnu.org/

› A "small blog"
– http://www.google.com

42

http://algo.ing.unimo.it/people/andrea/Didattica/HPC/index.html
mailto:paolo.burgio@unimore.it
http://www.google.com/
http://www.openmp.org/
https://gcc.gnu.org/

